Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Iron-sulfur cluster binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of iron-sulfur cluster coordination and relevance for parasite infectivity.

Identifieur interne : 000745 ( Main/Exploration ); précédent : 000744; suivant : 000746

Iron-sulfur cluster binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of iron-sulfur cluster coordination and relevance for parasite infectivity.

Auteurs : Bruno Manta [Uruguay] ; Carlo Pavan ; Mattia Sturlese ; Andrea Medeiros ; Martina Crispo ; Carsten Berndt ; R Luise Krauth-Siegel ; Massimo Bellanda ; Marcelo A. Comini

Source :

RBID : pubmed:23259530

Descripteurs français

English descriptors

Abstract

AIMS

Monothiol glutaredoxins (1-C-Grxs) are small proteins linked to the cellular iron and redox metabolism. Trypanosoma brucei brucei, model organism for human African trypanosomiasis, expresses three 1-C-Grxs. 1-C-Grx1 is a highly abundant mitochondrial protein capable to bind an iron-sulfur cluster (ISC) in vitro using glutathione (GSH) as cofactor. We here report on the functional and structural analysis of 1-C-Grx1 in relation to its ISC-binding properties.

RESULTS

An N-terminal extension unique to 1-C-Grx1 from trypanosomatids affects the oligomeric structure and the ISC-binding capacity of the protein. The active-site Cys104 is essential for ISC binding, and the parasite-specific glutathionylspermidine and trypanothione can replace GSH as the ligands of the ISC. Interestingly, trypanothione forms stable protein-free ISC species that in vitro are incorporated into the dithiol T. brucei 2-C-Grx1, but not 1-C-Grx1. Overexpression of the C104S mutant of 1-C-Grx1 impairs disease progression in a mouse model. The structure of the Grx-domain of 1-C-Grx1 was solved by nuclear magnetic resonance spectroscopy. Despite the fact that several residues--which in other 1-C-Grxs are involved in the noncovalent binding of GSH--are conserved, different physicochemical approaches did not reveal any specific interaction between 1-C-Grx1 and free thiol ligands.

INNOVATION

Parasite Grxs are able to coordinate an ISC formed with trypanothione, suggesting a new mechanism of ISC binding and a novel function for the parasite-specific dithiol. The first 3D structure and in vivo relevance of a 1-C-Grx from a pathogenic protozoan are reported.

CONCLUSION

T. brucei 1-C-Grx1 is indispensable for mammalian parasitism and utilizes a new mechanism for ISC binding.


DOI: 10.1089/ars.2012.4859
PubMed: 23259530
PubMed Central: PMC3739951


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Iron-sulfur cluster binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of iron-sulfur cluster coordination and relevance for parasite infectivity.</title>
<author>
<name sortKey="Manta, Bruno" sort="Manta, Bruno" uniqKey="Manta B" first="Bruno" last="Manta">Bruno Manta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo</wicri:regionArea>
<wicri:noRegion>Montevideo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pavan, Carlo" sort="Pavan, Carlo" uniqKey="Pavan C" first="Carlo" last="Pavan">Carlo Pavan</name>
</author>
<author>
<name sortKey="Sturlese, Mattia" sort="Sturlese, Mattia" uniqKey="Sturlese M" first="Mattia" last="Sturlese">Mattia Sturlese</name>
</author>
<author>
<name sortKey="Medeiros, Andrea" sort="Medeiros, Andrea" uniqKey="Medeiros A" first="Andrea" last="Medeiros">Andrea Medeiros</name>
</author>
<author>
<name sortKey="Crispo, Martina" sort="Crispo, Martina" uniqKey="Crispo M" first="Martina" last="Crispo">Martina Crispo</name>
</author>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
</author>
<author>
<name sortKey="Krauth Siegel, R Luise" sort="Krauth Siegel, R Luise" uniqKey="Krauth Siegel R" first="R Luise" last="Krauth-Siegel">R Luise Krauth-Siegel</name>
</author>
<author>
<name sortKey="Bellanda, Massimo" sort="Bellanda, Massimo" uniqKey="Bellanda M" first="Massimo" last="Bellanda">Massimo Bellanda</name>
</author>
<author>
<name sortKey="Comini, Marcelo A" sort="Comini, Marcelo A" uniqKey="Comini M" first="Marcelo A" last="Comini">Marcelo A. Comini</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23259530</idno>
<idno type="pmid">23259530</idno>
<idno type="doi">10.1089/ars.2012.4859</idno>
<idno type="pmc">PMC3739951</idno>
<idno type="wicri:Area/Main/Corpus">000777</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000777</idno>
<idno type="wicri:Area/Main/Curation">000777</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000777</idno>
<idno type="wicri:Area/Main/Exploration">000777</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Iron-sulfur cluster binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of iron-sulfur cluster coordination and relevance for parasite infectivity.</title>
<author>
<name sortKey="Manta, Bruno" sort="Manta, Bruno" uniqKey="Manta B" first="Bruno" last="Manta">Bruno Manta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.</nlm:affiliation>
<country xml:lang="fr">Uruguay</country>
<wicri:regionArea>Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo</wicri:regionArea>
<wicri:noRegion>Montevideo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pavan, Carlo" sort="Pavan, Carlo" uniqKey="Pavan C" first="Carlo" last="Pavan">Carlo Pavan</name>
</author>
<author>
<name sortKey="Sturlese, Mattia" sort="Sturlese, Mattia" uniqKey="Sturlese M" first="Mattia" last="Sturlese">Mattia Sturlese</name>
</author>
<author>
<name sortKey="Medeiros, Andrea" sort="Medeiros, Andrea" uniqKey="Medeiros A" first="Andrea" last="Medeiros">Andrea Medeiros</name>
</author>
<author>
<name sortKey="Crispo, Martina" sort="Crispo, Martina" uniqKey="Crispo M" first="Martina" last="Crispo">Martina Crispo</name>
</author>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
</author>
<author>
<name sortKey="Krauth Siegel, R Luise" sort="Krauth Siegel, R Luise" uniqKey="Krauth Siegel R" first="R Luise" last="Krauth-Siegel">R Luise Krauth-Siegel</name>
</author>
<author>
<name sortKey="Bellanda, Massimo" sort="Bellanda, Massimo" uniqKey="Bellanda M" first="Massimo" last="Bellanda">Massimo Bellanda</name>
</author>
<author>
<name sortKey="Comini, Marcelo A" sort="Comini, Marcelo A" uniqKey="Comini M" first="Marcelo A" last="Comini">Marcelo A. Comini</name>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Coenzymes (chemistry)</term>
<term>Consensus Sequence (MeSH)</term>
<term>Cysteine (chemistry)</term>
<term>Female (MeSH)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutathione (chemistry)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred BALB C (MeSH)</term>
<term>Mitochondria (enzymology)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Nuclear Magnetic Resonance, Biomolecular (MeSH)</term>
<term>Parasitemia (parasitology)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Protozoan Proteins (chemistry)</term>
<term>Trypanosoma brucei brucei (enzymology)</term>
<term>Trypanosoma brucei brucei (pathogenicity)</term>
<term>Trypanosomiasis, African (parasitology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Coenzymes (composition chimique)</term>
<term>Cystéine (composition chimique)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Femelle (MeSH)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutathion (composition chimique)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Maladie du sommeil (parasitologie)</term>
<term>Mitochondries (enzymologie)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Parasitémie (parasitologie)</term>
<term>Protéines de protozoaire (composition chimique)</term>
<term>Résonance magnétique nucléaire biomoléculaire (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée BALB C (MeSH)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Séquence consensus (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Trypanosoma brucei brucei (enzymologie)</term>
<term>Trypanosoma brucei brucei (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Coenzymes</term>
<term>Cysteine</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Iron-Sulfur Proteins</term>
<term>Protozoan Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Coenzymes</term>
<term>Cystéine</term>
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Protéines de protozoaire</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Mitochondries</term>
<term>Trypanosoma brucei brucei</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mitochondria</term>
<term>Trypanosoma brucei brucei</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Maladie du sommeil</term>
<term>Parasitémie</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Parasitemia</term>
<term>Trypanosomiasis, African</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Trypanosoma brucei brucei</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Trypanosoma brucei brucei</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Catalytic Domain</term>
<term>Consensus Sequence</term>
<term>Female</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Nuclear Magnetic Resonance, Biomolecular</term>
<term>Protein Binding</term>
<term>Protein Structure, Secondary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Domaine catalytique</term>
<term>Données de séquences moléculaires</term>
<term>Femelle</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Résonance magnétique nucléaire biomoléculaire</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Structure secondaire des protéines</term>
<term>Séquence consensus</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>AIMS</b>
</p>
<p>Monothiol glutaredoxins (1-C-Grxs) are small proteins linked to the cellular iron and redox metabolism. Trypanosoma brucei brucei, model organism for human African trypanosomiasis, expresses three 1-C-Grxs. 1-C-Grx1 is a highly abundant mitochondrial protein capable to bind an iron-sulfur cluster (ISC) in vitro using glutathione (GSH) as cofactor. We here report on the functional and structural analysis of 1-C-Grx1 in relation to its ISC-binding properties.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>An N-terminal extension unique to 1-C-Grx1 from trypanosomatids affects the oligomeric structure and the ISC-binding capacity of the protein. The active-site Cys104 is essential for ISC binding, and the parasite-specific glutathionylspermidine and trypanothione can replace GSH as the ligands of the ISC. Interestingly, trypanothione forms stable protein-free ISC species that in vitro are incorporated into the dithiol T. brucei 2-C-Grx1, but not 1-C-Grx1. Overexpression of the C104S mutant of 1-C-Grx1 impairs disease progression in a mouse model. The structure of the Grx-domain of 1-C-Grx1 was solved by nuclear magnetic resonance spectroscopy. Despite the fact that several residues--which in other 1-C-Grxs are involved in the noncovalent binding of GSH--are conserved, different physicochemical approaches did not reveal any specific interaction between 1-C-Grx1 and free thiol ligands.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>INNOVATION</b>
</p>
<p>Parasite Grxs are able to coordinate an ISC formed with trypanothione, suggesting a new mechanism of ISC binding and a novel function for the parasite-specific dithiol. The first 3D structure and in vivo relevance of a 1-C-Grx from a pathogenic protozoan are reported.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>T. brucei 1-C-Grx1 is indispensable for mammalian parasitism and utilizes a new mechanism for ISC binding.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23259530</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7716</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Iron-sulfur cluster binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of iron-sulfur cluster coordination and relevance for parasite infectivity.</ArticleTitle>
<Pagination>
<MedlinePgn>665-82</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/ars.2012.4859</ELocationID>
<Abstract>
<AbstractText Label="AIMS" NlmCategory="OBJECTIVE">Monothiol glutaredoxins (1-C-Grxs) are small proteins linked to the cellular iron and redox metabolism. Trypanosoma brucei brucei, model organism for human African trypanosomiasis, expresses three 1-C-Grxs. 1-C-Grx1 is a highly abundant mitochondrial protein capable to bind an iron-sulfur cluster (ISC) in vitro using glutathione (GSH) as cofactor. We here report on the functional and structural analysis of 1-C-Grx1 in relation to its ISC-binding properties.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">An N-terminal extension unique to 1-C-Grx1 from trypanosomatids affects the oligomeric structure and the ISC-binding capacity of the protein. The active-site Cys104 is essential for ISC binding, and the parasite-specific glutathionylspermidine and trypanothione can replace GSH as the ligands of the ISC. Interestingly, trypanothione forms stable protein-free ISC species that in vitro are incorporated into the dithiol T. brucei 2-C-Grx1, but not 1-C-Grx1. Overexpression of the C104S mutant of 1-C-Grx1 impairs disease progression in a mouse model. The structure of the Grx-domain of 1-C-Grx1 was solved by nuclear magnetic resonance spectroscopy. Despite the fact that several residues--which in other 1-C-Grxs are involved in the noncovalent binding of GSH--are conserved, different physicochemical approaches did not reveal any specific interaction between 1-C-Grx1 and free thiol ligands.</AbstractText>
<AbstractText Label="INNOVATION" NlmCategory="METHODS">Parasite Grxs are able to coordinate an ISC formed with trypanothione, suggesting a new mechanism of ISC binding and a novel function for the parasite-specific dithiol. The first 3D structure and in vivo relevance of a 1-C-Grx from a pathogenic protozoan are reported.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">T. brucei 1-C-Grx1 is indispensable for mammalian parasitism and utilizes a new mechanism for ISC binding.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Manta</LastName>
<ForeName>Bruno</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pavan</LastName>
<ForeName>Carlo</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sturlese</LastName>
<ForeName>Mattia</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Medeiros</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Crispo</LastName>
<ForeName>Martina</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Berndt</LastName>
<ForeName>Carsten</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Krauth-Siegel</LastName>
<ForeName>R Luise</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bellanda</LastName>
<ForeName>Massimo</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Comini</LastName>
<ForeName>Marcelo A</ForeName>
<Initials>MA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003067">Coenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015800">Protozoan Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003067" MajorTopicYN="N">Coenzymes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016384" MajorTopicYN="N">Consensus Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019906" MajorTopicYN="N">Nuclear Magnetic Resonance, Biomolecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018512" MajorTopicYN="N">Parasitemia</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015800" MajorTopicYN="N">Protozoan Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014346" MajorTopicYN="N">Trypanosoma brucei brucei</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014353" MajorTopicYN="N">Trypanosomiasis, African</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23259530</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2012.4859</ArticleId>
<ArticleId IdType="pmc">PMC3739951</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 1995 Nov;4(11):2411-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8563639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Apr 22;36(16):5029-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9125525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Oct 17;273(1):283-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2005 Feb 1;58(2):376-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15558583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24553-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 18;436(7053):1035-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Oct 28;353(3):629-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16181638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Apr 17;580(9):2273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16566929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jul 4;45(26):7998-8008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16800625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Feb 15;402(1):43-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17040206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 23;282(12):8678-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 1;104(18):7379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17460036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2008 Jan;389(1):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18095866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Feb 5;47(5):1452-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Mar 19;582(6):848-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18275854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1236-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18395526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 10;283(41):27785-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 3;284(14):9299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 10;284(15):10150-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19181668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Parasitol. 2009 Aug;39(10):1059-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19477177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 Oct;5(10):e1000541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19851441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Jan;35(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19811920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Feb 12;392(3):467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20085751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2010 Mar;46(3):199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20041279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2010 Apr;24(4):1035-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19952282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Apr 2;394(2):372-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20226171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2010 May;12(5):389-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20197106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 May 14;398(4):614-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20347849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2010 May;120(5):1749-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20364084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jun;66(Pt 6):725-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20516625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Nov 5;285(45):35224-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20826822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Parasitol. 2011 Feb;97(1):88-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21348612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Mar 9;133(9):3034-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21323311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2011 May 7;47(17):4989-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21437321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 May 18;30(10):2044-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 May 20;408(4):609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Jun;21(6):915-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21363968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21299470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Aug;81(3):623-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21631607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Aug 5;286(31):27515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Sep 1;27(17):2384-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Oct 18;50(41):8957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2011 Dec;24(6):1179-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21769609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Scand J Immunol. 2012 Jan;75(1):5-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21916913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;831:429-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22167686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2012 Jul;53(1):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22449794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Jul 4;134(26):10745-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22687047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jul 27;337(6093):463-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22700656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2013 Apr 1;435(1):74-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23296042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Sep 1;19(7):708-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22978520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2001 Jul;115(2):189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11420105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 May 24;319(1):209-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12051947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2002 Jun;23(2):139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12153039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):37590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12138088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2002 Nov;24(3):171-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12522306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Oct;185(19):5673-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13129938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 1987 Jun;24(2):185-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3114634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Jun 16;31(23):5269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1606151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Elev Med Vet Pays Trop. 1992;45(3-4):279-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1339995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Feb 4;235(5):1585-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8107093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Nov;6(3):277-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8520220</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Uruguay</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bellanda, Massimo" sort="Bellanda, Massimo" uniqKey="Bellanda M" first="Massimo" last="Bellanda">Massimo Bellanda</name>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
<name sortKey="Comini, Marcelo A" sort="Comini, Marcelo A" uniqKey="Comini M" first="Marcelo A" last="Comini">Marcelo A. Comini</name>
<name sortKey="Crispo, Martina" sort="Crispo, Martina" uniqKey="Crispo M" first="Martina" last="Crispo">Martina Crispo</name>
<name sortKey="Krauth Siegel, R Luise" sort="Krauth Siegel, R Luise" uniqKey="Krauth Siegel R" first="R Luise" last="Krauth-Siegel">R Luise Krauth-Siegel</name>
<name sortKey="Medeiros, Andrea" sort="Medeiros, Andrea" uniqKey="Medeiros A" first="Andrea" last="Medeiros">Andrea Medeiros</name>
<name sortKey="Pavan, Carlo" sort="Pavan, Carlo" uniqKey="Pavan C" first="Carlo" last="Pavan">Carlo Pavan</name>
<name sortKey="Sturlese, Mattia" sort="Sturlese, Mattia" uniqKey="Sturlese M" first="Mattia" last="Sturlese">Mattia Sturlese</name>
</noCountry>
<country name="Uruguay">
<noRegion>
<name sortKey="Manta, Bruno" sort="Manta, Bruno" uniqKey="Manta B" first="Bruno" last="Manta">Bruno Manta</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000745 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000745 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23259530
   |texte=   Iron-sulfur cluster binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of iron-sulfur cluster coordination and relevance for parasite infectivity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23259530" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020